Advanced Linear Algebra (MA 409) Problem Sheet - 28

The Singular Value Decomposition and the Pseudoinverse

- 1. Label the following statements as true or false.
 - (a) The singular values of any linear operator on a finite-dimensional vector space are also eigenvalues of the operator.
 - (b) The singular values of any matrix A are the eigenvalues of A^*A .
 - (c) For any matrix *A* and any scalar *c*, if σ is a singular value of *A*, then $|c|\sigma$ is a singular value of *cA*.
 - (d) The singular values of any linear operator are nonnegative.
 - (e) If λ is an eigenvalue of a self-adjoint matrix *A*, then λ is a singular value of *A*.
 - (f) For any $m \times n$ matrix A and any $b \in F^n$, the vector $A^{\dagger}b$ is a solution to Ax = b.
 - (g) The pseudoinverse of any linear operator exists even if the operator is not invertible.
- 2. Let $T : V \to W$ be a linear transformation of rank r, where V and W are finite-dimensional inner product spaces. In each of the following, find orthonormal bases $\{v_1, v_2, \ldots, v_n\}$ for V and $\{u_1, u_2, \ldots, u_m\}$ for W, and the nonzero singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$ of T such that $T(v_i) = \sigma_i u_i$ for $1 \le i \le r$.
 - (a) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (x_1, x_1 + x_2, x_1 x_2)$
 - (b) Let $P_2(\mathbb{R})$ and $P_1(\mathbb{R})$ be the polynomial spaces with inner product defined by

$$\langle f(x),g(x)\rangle = \int_{-1}^{1} f(t)g(t) dt.$$

Let $T : P_2(\mathbb{R}) \to P_1(\mathbb{R})$ be the linear transformation defined by T(f(x)) = f''(x).

(c) Let $V = W = span(\{1, \sin x, \cos x\})$ with the inner product defined by

$$\langle f,g \rangle = \int_0^{2\pi} f(t)g(t)\,dt$$

and *T* is defined by T(f) = f' + 2f

- (d) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(z_1, z_2) = ((1-i)z_2, (1+i)z_1 + z_2)$
- 3. Find a singular value decomposition for each of the following matrices.

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ -1 & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$
d) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ e) $\begin{pmatrix} 1+i & 1 \\ 1-i & -i \end{pmatrix}$ f) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -2 & 1 \\ 1 & -1 & 1 & 1 \end{pmatrix}$

4. Find a polar decomposition for each of the following matrices.

a)
$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$$
 b) $\begin{pmatrix} 20 & 4 & 0 \\ 0 & 0 & 1 \\ 4 & 20 & 0 \end{pmatrix}$

5. Find an explicit formula for each of the following expressions.

- (a) $T^{\dagger}(x_1, x_2, x_3)$, where *T* is the linear transformation of Exercise 2a
- (b) $T^{\dagger}(a + bx + cx^2)$, where *T* is the linear transformation of Exercise 2b
- (c) $T^{\dagger}(a + b \sin x + c \cos x)$, where *T* is the linear transformation of Exercise 2b
- (d) $T^{\dagger}(z_1, z_2)$, where *T* is the linear transformation of Exercise 2d
- 6. Use the results of Exercise 3 to find the pseudoinverse of each of the following matrices.

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ -1 & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$
d) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ e) $\begin{pmatrix} 1+i & 1 \\ 1-i & -i \end{pmatrix}$ f) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -2 & 1 \\ 1 & -1 & 1 & 1 \end{pmatrix}$

- 7. For each of the given linear transformations $T: V \rightarrow W$,
 - (i) Describe the subspace Z_1 of V such that $T^{\dagger}T$ is the orthogonal projection of V on Z_1 .
 - (ii) Describe the subspace Z_2 of W such that TT^{\dagger} is the orthogonal projection of W on Z_2 .
 - (a) *T* is the linear transformation of Exercise 2a
 - (b) *T* is the linear transformation of Exercise 2b
 - (c) *T* is the linear transformation of Exercise 2c
 - (d) *T* is the linear transformation of Exercise 2d
- 8. For each of the given systems of linear equations,
 - (i) If the system is consistent, find the unique solution having minimum norm.
 - (ii) If the system is inconsistent, find the "best approximation to a solution "having minimum norm.

(Use your answers to parts (a) and (f) of Exercise 6.)

a) $x_1 + x_2 = 1$	b) $x_1 + x_2 + x_3 + x_4 = 2$
$x_1 + x_2 = 2$	$x_1 - 2x_3 + x_4 = -1$
$-x_1 + -x_2 = 0$	$x_1 - x_2 + x_3 + x_4 = 2$

9. Let *V* and *W* be finite-dimensional inner product spaces over *F*, and suppose that $\{v_1, v_2, ..., v_n\}$ and $\{u_1, u_2, ..., u_m\}$ are orthonormal bases for *V* and *W*, respectively. Let $T : V \to W$ is a linear transformation of rank *r*, and suppose that $\sigma_1 \ge \sigma_1 \ge \cdots \ge \sigma_r > 0$ are such that

$$T(v_i) = \begin{cases} \sigma_i u_i & \text{if } 1 \le i \le r \\ 0 & \text{if } r < i. \end{cases}$$

(a) Prove that $\{u_1, u_2, ..., u_m\}$ is a set of eigenvectors of TT^* with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_m$, where

$$\lambda_i = \begin{cases} \sigma_i^2 & \text{if } 1 \le i \le r \\ 0 & \text{if } r < i. \end{cases}$$

- (b) Let *A* be an $m \times n$ matrix with real or complex entries. Prove that the nonzero singular values of *A* are the positive square roots of the nonzero eigenvalues of AA^* , including repetitions.
- (c) Prove that TT^* and T^*T have the same nonzero eigenvalues, including repetitions.
- (d) State and prove a result for matrices analogous to (c).
- 10. We have proved the following result : Let $T : V \to W$ be a linear transformation from a finitedimensional vector space V to a finite-dimensional vector space W. Let β and β' be ordered bases for V, and let γ and γ' be ordered bases for W. Then prove that $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$, where Q is the matrix that changes β' -coordinates into β -coordinates and P is the matrix that changes γ' -coordinates.

Use the above result to obtain another proof of the singular value decomposition theorem for matrices.

- 11. This exercise relates the singular values of a well-behaved linear operator or matrix to its eigenvalues.
 - (a) Let *T* be a normal linear operator on an *n*-dimensional inner product space with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Prove that the singular values of *T* are $|\lambda_1|, |\lambda_2|, \ldots, |\lambda_n|$.
 - (b) State and prove a result for matrices analogous to (a).
- 12. Let *A* be a normal matrix with an orthonormal basis of eigenvectors $\beta = \{v_1, v_2, ..., v_n\}$ and corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Let *V* be the $n \times n$ matrix whose columns are the vectors in β . Prove that for each *i* there is a scalar θ_i of absolute value 1 such that if *U* is the $n \times n$ matrix with $\theta_i v_i$ as column *i* and Σ is the diagonal matrix such that $\sum_{ii} = |\lambda_i|$ for each *i*, then $U \sum V^*$ is a singular value decomposition of *A*.
- 13. Prove that if *A* is a positive semidefinite matrix, then the singular values of *A* are the same as the eigenvalues of *A*.
- 14. Prove that if *A* is a positive definite matrix and $A = U \sum V^*$ is a singular value decomposition of *A*, then U = V.
- 15. Let *A* be a square matrix with a polar decomposition A = WP.
 - (a) Prove that *A* is normal if and only if $WP^2 = P^2W$.
 - (b) Use (a) to prove that A is normal if and only if WP = PW.
- 16. Let *A* be a square matrix. Prove an alternate form of the polar decomposition for *A* : There exists a unitary matrix *W* and a positive semidefinite matrix *P* such that A = PW.
- 17. Let *T* and *U* be linear operators on \mathbb{R}^2 defined for all $(x_1, x_2) \in \mathbb{R}^2$ by

 $T(x_1, x_2) = (x_1, 0)$ and $U(x_1, x_2) = (x_1 + x_2, 0)$.

(a) Prove that $(UT)^{\dagger} \neq T^{\dagger}U^{\dagger}$.

- (b) Exhibit matrices *A* and *B* such that *AB* is defined, but $(AB)^{\dagger} \neq B^{\dagger}A^{\dagger}$.
- 18. Let *A* be an $m \times n$ matrix. Prove the following results.
 - (a) For any $m \times m$ unitary matrix G, $(GA)^{\dagger} = A^{\dagger}G^{*}$.
 - (b) For any $n \times n$ unitary matrix H, $(AH)^{\dagger} = H^*A^{\dagger}$.
- 19. Let *A* be a matrix with real or complex entries. Prove the following results.
 - (a) The nonzero singular values of *A* are the same as the nonzero singular values of A^* , which are the same as the nonzero singular values of A^t .
 - (b) $(A^{\dagger})^* = (A^*)^{\dagger}$.
 - (c) $(A^{\dagger})^t = (A^t)^{\dagger}$.
- 20. Let *A* be a square matrix such that $A^2 = O$. Prove that $(A^{\dagger})^2 = O$.
- 21. Let *V* and *W* be finite-dimensional inner product spaces, and let $T : V \to W$ be linear. Prove the following results.
 - (a) $TT^{\dagger}T = T$.
 - (b) $T^{\dagger}TT^{\dagger} = T^{\dagger}$.
 - (c) Both $T^{\dagger}T$ and TT^{\dagger} are self-adjoint.

The preceding three statements are called the **Penrose conditions**, and they characterize the pseudoinverse of a linear transformation as shown in Exercise 22.

- 22. Let *V* and *W* be finite-dimensional inner product spaces. Let $T : V \to W$ and $U : W \to V$ be linear transformations such that TUT = T, UTU = U, and both UT and TU are self-adjoint. Prove that $U = T^{\dagger}$.
- 23. State and prove a result for matrices that is analogous to the result of Exercise 21.
- 24. State and prove a result for matrices that is analogous to the result of Exercise 22.
- 25. Let *V* and *W* be finite-dimensional inner product spaces, and let $T : V \to W$ be linear. Prove the following results
 - (a) If *T* is one-to-one, then T^*T is invertible and $T^{\dagger} = (T^*T)^{-1}T^*$.
 - (b) If *T* is onto, then TT^* is invertible and $T^{\dagger} = T^*(TT^*)^{-1}$.
- 26. Let *V* and *W* be finite-dimensional inner product spaces with orthonormal bases β and γ , respectively, and let $T: V \to W$ be linear. Prove that $([T]_{\beta}^{\gamma})^{\dagger} = [T^{\dagger}]_{\gamma}^{\beta}$.
- 27. Let *V* and *W* be finite-dimensional inner product spaces, and let $T : V \to W$ be a linear transformation. Prove that TT^{\dagger} is the orthogonal projection of *W* on R(T).
