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The Singular Value Decomposition and the Pseudoinverse

1. Label the following statements as true or false.

(a) The singular values of any linear operator on a finite-dimensional vector space are also
eigenvalues of the operator.

(b) The singular values of any matrix A are the eigenvalues of A∗A.

(c) For any matrix A and any scalar c, if σ is a singular value of A, then |c|σ is a singular value
of cA.

(d) The singular values of any linear operator are nonnegative.

(e) If λ is an eigenvalue of a self-adjoint matrix A, then λ is a singular value of A.

(f) For any m× n matrix A and any b ∈ Fn, the vector A†b is a solution to Ax = b.

(g) The pseudoinverse of any linear operator exists even if the operator is not invertible.

2. Let T : V → W be a linear transformation of rank r, where V and W are finite-dimensional
inner product spaces. In each of the following, find orthonormal bases {v1, v2, . . . , vn} for V
and {u1, u2, . . . , um} for W, and the nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σr of T such that
T(vi) = σiui for 1 ≤ i ≤ r.

(a) T : R2 → R3 defined by T(x1, x2) = (x1, x1 + x2, x1 − x2)

(b) Let P2(R) and P1(R) be the polynomial spaces with inner product defined by

〈 f (x), g(x)〉 =
∫ 1

−1
f (t)g(t) dt.

Let T : P2(R)→ P1(R) be the linear transformation defined by T( f (x)) = f ′′(x).
(c) Let V = W = span({1, sin x, cos x}) with the inner product defined by〈

f , g
〉
=
∫ 2π

0
f (t)g(t) dt

and T is defined by T( f ) = f ′ + 2 f
(d) T : C2 → C2 defined by T(z1, z2) = ((1− i)z2, (1 + i)z1 + z2)

3. Find a singular value decomposition for each of the following matrices.

 1 1
1 1
−1 −1

a)
(

1 0 1
1 0 −1

)
b)


1 1
0 1
1 0
1 1

c)

 1 1 1
1 −1 0
1 0 −1

d)
(

1 + i 1
1− i −i

)
e)

 1 1 1 1
1 0 −2 1
1 −1 1 1

f)



4. Find a polar decomposition for each of the following matrices.

(
1 1
2 −2

)
a)

 20 4 0
0 0 1
4 20 0

b)

5. Find an explicit formula for each of the following expressions.

(a) T†(x1, x2, x3), where T is the linear transformation of Exercise 2a
(b) T†(a + bx + cx2), where T is the linear transformation of Exercise 2b
(c) T†(a + b sin x + c cos x), where T is the linear transformation of Exercise 2b
(d) T†(z1, z2), where T is the linear transformation of Exercise 2d

6. Use the results of Exercise 3 to find the pseudoinverse of each of the following matrices.

 1 1
1 1
−1 −1

a)
(

1 0 1
1 0 −1

)
b)


1 1
0 1
1 0
1 1

c)

 1 1 1
1 −1 0
1 0 −1

d)
(

1 + i 1
1− i −i

)
e)

 1 1 1 1
1 0 −2 1
1 −1 1 1

f)

7. For each of the given linear transformations T : V →W,

(i) Describe the subspace Z1 of V such that T†T is the orthogonal projection of V on Z1.
(ii) Describe the subspace Z2 of W such that TT† is the orthogonal projection of W on Z2.

(a) T is the linear transformation of Exercise 2a
(b) T is the linear transformation of Exercise 2b
(c) T is the linear transformation of Exercise 2c
(d) T is the linear transformation of Exercise 2d

8. For each of the given systems of linear equations,

(i) If the system is consistent, find the unique solution having minimum norm.
(ii) If the system is inconsistent, find the “best approximation to a solution ”having minimum

norm.

(Use your answers to parts (a) and (f) of Exercise 6.)

x1 + x2 = 1
x1 + x2 = 2
−x1 +−x2 = 0

a) x1 + x2 + x3 + x4 = 2
x1 − 2x3 + x4 = −1
x1 − x2 + x3 + x4 = 2

b)

9. Let V and W be finite-dimensional inner product spaces over F, and suppose that {v1, v2, . . . , vn}
and {u1, u2, . . . , um} are orthonormal bases for V and W, respectively. Let T : V →W is a linear
transformation of rank r, and suppose that σ1 ≥ σ1 ≥ · · · ≥ σr > 0 are such that

T(vi) =

{
σiui if 1 ≤ i ≤ r
0 if r < i.



(a) Prove that {u1, u2, . . . , um} is a set of eigenvectors of TT∗ with corresponding eigenvalues
λ1, λ2, . . . , λm, where

λi =

{
σ2

i if 1 ≤ i ≤ r
0 if r < i.

(b) Let A be an m × n matrix with real or complex entries. Prove that the nonzero singular
values of A are the positive square roots of the nonzero eigenvalues of AA∗, including
repetitions.

(c) Prove that TT∗ and T∗T have the same nonzero eigenvalues, including repetitions.

(d) State and prove a result for matrices analogous to (c).

10. We have proved the following result : Let T : V → W be a linear transformation from a finite-
dimensional vector space V to a finite-dimensional vector space W. Let β and β′ be ordered
bases for V, and let γ and γ′ be ordered bases for W. Then prove that [T]γ

′

β′ = P−1[T]γβ Q, where
Q is the matrix that changes β′-coordinates into β-coordinates and P is the matrix that changes
γ′-coordinates into γ-coordinates.

Use the above result to obtain another proof of the singular value decomposition theorem for
matrices.

11. This exercise relates the singular values of a well-behaved linear operator or matrix to its eigen-
values.

(a) Let T be a normal linear operator on an n-dimensional inner product space with eigenval-
ues λ1, λ2, . . . , λn. Prove that the singular values of T are |λ1|, |λ2|, . . . , |λn|.

(b) State and prove a result for matrices analogous to (a).

12. Let A be a normal matrix with an orthonormal basis of eigenvectors β = {v1, v2, . . . , vn} and
corresponding eigenvalues λ1, λ2, . . . , λn. Let V be the n × n matrix whose columns are the
vectors in β. Prove that for each i there is a scalar θi of absolute value 1 such that if U is the
n× n matrix with θivi as column i and ∑ is the diagonal matrix such that ∑ii = |λi| for each i,
then U ∑ V∗ is a singular value decomposition of A.

13. Prove that if A is a positive semidefinite matrix, then the singular values of A are the same as
the eigenvalues of A.

14. Prove that if A is a positive definite matrix and A = U ∑ V∗ is a singular value decomposition
of A, then U = V.

15. Let A be a square matrix with a polar decomposition A = WP.

(a) Prove that A is normal if and only if WP2 = P2W.

(b) Use (a) to prove that A is normal if and only if WP = PW.

16. Let A be a square matrix. Prove an alternate form of the polar decomposition for A : There
exists a unitary matrix W and a positive semidefinite matrix P such that A = PW.

17. Let T and U be linear operators on R2 defined for all (x1, x2) ∈ R2 by

T(x1, x2) = (x1, 0) and U(x1, x2) = (x1 + x2, 0).

(a) Prove that (UT)† 6= T†U†.



(b) Exhibit matrices A and B such that AB is defined, but (AB)† 6= B† A†.

18. Let A be an m× n matrix. Prove the following results.

(a) For any m×m unitary matrix G, (GA)† = A†G∗.

(b) For any n× n unitary matrix H, (AH)† = H∗A†.

19. Let A be a matrix with real or complex entries. Prove the following results.

(a) The nonzero singular values of A are the same as the nonzero singular values of A∗, which
are the same as the nonzero singular values of At.

(b) (A†)∗ = (A∗)†.

(c) (A†)t = (At)†.

20. Let A be a square matrix such that A2 = O. Prove that (A†)2 = O.

21. Let V and W be finite-dimensional inner product spaces, and let T : V → W be linear. Prove
the following results.

(a) TT†T = T.

(b) T†TT† = T†.

(c) Both T†T and TT† are self-adjoint.

The preceding three statements are called the Penrose conditions, and they characterize the
pseudoinverse of a linear transformation as shown in Exercise 22.

22. Let V and W be finite-dimensional inner product spaces. Let T : V → W and U : W → V be
linear transformations such that TUT = T, UTU = U, and both UT and TU are self-adjoint.
Prove that U = T†.

23. State and prove a result for matrices that is analogous to the result of Exercise 21.

24. State and prove a result for matrices that is analogous to the result of Exercise 22.

25. Let V and W be finite-dimensional inner product spaces, and let T : V → W be linear. Prove
the following results

(a) If T is one-to-one, then T∗T is invertible and T† = (T∗T)−1T∗.

(b) If T is onto, then TT∗ is invertible and T† = T∗(TT∗)−1.

26. Let V and W be finite-dimensional inner product spaces with orthonormal bases β and γ, re-
spectively, and let T : V →W be linear. Prove that ([T]γβ)

† = [T†]
β
γ.

27. Let V and W be finite-dimensional inner product spaces, and let T : V → W be a linear trans-
formation. Prove that TT† is the orthogonal projection of W on R(T).

*****


